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SUMMARY 

A high-resolution, finite difference numerical study is reported on three-dimensional natural convection of 
air in a differentially heated cubical enclosure over an extensive range of Rayleigh number from lo3 to 10". 
The maximum number of grid points is 122 x 62 x 62. Solutions to the primitive variable formulation of the 
incompressible Navier-Stokes and energy equations are acquired by a control-volume-based procedure 
together with a higher-order upwind-differencing technique. The field characteristics at large-time limits are 
examined in detail by state-of-the-art numerical visualizations of the three-dimensional results. The 
emergence of the well-defined boundary layers and the interior core at high Rayleigh numbers is captured by 
elaborate numerical visualizations. Both the similarities and discrepancies between the three- and two- 
dimensional computations are pointed out. These emphasize the need for three-dimensional calculations to 
accurately determine the flow characteristics and heat transfer properties in realistic, high-Rayleigh-number 
situations. 
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INTRODUCTION 

Natural convection flows in enclosures arise in a variety of thermal engineering systems. 
Applications are found in solar energy collectors and storage devices, electronic equipment 
cooling, ventilation of buildings and compartment fires, to cite a few. Research efforts in these 
fields were concentrated on laboratory experiments and numerical simulations. With the advent 
of high-speed computers, numerical computations of such complex fluid phenomena have gained 
momentum of late. 

The majority of the preceding numerical studies have been two-dimensional. This was 
unavoidable in view of the limited capability of the computing resources as well as the 
prohibitively high cost of computations. Various numerical schemes were explored and tested. 
Owing to these strenuous endeavours, a considerable body of knowledge has been accumulated 
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Figure 1. The geometry and boundary conditions of the problem. The walls are thermally insulated unless otherwise 
noted 

on the principal characteristics of two-dimensional convective flows in geometrically simple 
enclosures. In the present paper a cubical enclosure is considered. This represents a well- 
documented configuration. The major attractiveness is that the boundary conditions are straight- 
forward; consequently, the pertinent physics can be studied in depth, without being distracted by 
other complicated features. 

The specific flow under consideration is the natural convection of air in a cubical enclosure, of 
which two vertical sidewalls (x' = O  and Lo) are differentially heated. As sketched in Figure 1, the 
temperatures of the sidewalls are T, (at x* =0) and TH (at x* =Lo), where TH> T,. These 
'heating-by-the-side' convective flows have been widely investigated.' 

The two-dimensional numerical computations of this flow have been carried out over a broad 
range of Rayleigh number, lo3 <RUG Markatos and Pericleous2 assumed laminar flows up 
to Ra = lo6. For higher Rayleigh numbers the k--E turbulence model was invoked. A set of 
benchmark numerical solutions3 has been suggested in the range lo3 d Ra < lo6 for a Boussinesq 
fluid of Pr = 0.71. Mention is made of these representative works to underscore the breadth and 
scope of the past numerical examinations. 

As to the numerical calculations of very high-Rayleigh-number flows, a direct numerical 
simulation technique was employed for a two-dimensional ~ a v i t y . ~  Some of the prominent 
features were disclosed and qualitative comparisons with the experiments were attempted. 

Another important research field of concern is the transient behaviour of convective flows in 
the cavity when the differential heating is applied abruptly to the system. Patterson and 
Imberger,5 by way of a physically plausible scaling argument, proposed classifications of the types 
of transient flows. Experimental verifications of the main contentions of the scaling analysis were 
reported in the literature.6 The transient convection in a cavity has also been the subject of intense 
numerical computations. The prior two-dimensional numerical simulations4, 7, revealed 
qualitative consistency with some of the analytical  prediction^.^ 

It is needless to state that, in order to move closer to practical systems, three-dimensional flow 
and heat transfer calculations are highly desirable. However, owing to the obvious reason of the 
restricted availability of computational resources, full-scale three-dimensional simulations have 
been in an infant stage. Several three-dimensional numerical solutions have been illustratedg-'l 
which demonstrated three-dimensional flow structures in a rectangular box. However, the 
previous three-dimensional computations have suffered mostly from the lack of proper 
resolution. Relatively coarse finite difference meshes (the largest number of grid points used was 
45 x 45 x 20)" were employed in these preceding calculations. Another crucial area that needs 
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significant improvement is numerical visualization techniques. Since the field is three-dimen- 
sional in nature, proper and accurate interpretations of the numerical results may be greatly 
aided only by use of the elaborate three-dimensional computer graphics capabilities. 

This paper describes a comprehensive series of recent efforts to delineate the three-dimensional 
natural convection in a cubical box. The unapproximated three-dimensional Navier-Stokes and 
energy equations are solved numerically on an extremely fine mesh. The accessibility to a high- 
power supercomputer system made it possible to embark on such extensive numerical com- 
putations. The purpose here is to portray the computational procedure of three-dimensional 
cavity flows driven by the differential heating of the vertical sidewalls. 

In this paper, exemplary results of such three-dimensional calculations of large-time behaviour 
as well as transient processes of the convective flows are illuminated. Of particular relevance is the 
implementation of state-of-the-art numerical visualization techniques to the three-dimensional 
results. These exercises will set the stage for further systematically organized numerical simu- 
lations of more complex flow geometries. 

MATHEMATICAL MODEL 

The flow is governed by the incompressible unsteady Navier-Stokes and energy equations. The 
Boussinesq approximation is invoked for the fluid property variation. The non-dimensionalized 
form of the basic equations can be expressed in tensor notation as 

aui a a p  1 aZU. T -  1 
-+-(u.u.)= --+-L + 6,2 __ at axj ’ axi Re a x j a x j  Fr  ’ 

aT a 1 a2T 
- + -(uj T )  =- ~ 

at ax j  Re Pr axjaxj’ (3) 

where 6, is the Kronecker delta (Sij = 1 if i = j ;  hi, = 0 otherwise). The viscous dissipation and the 
pressure work terms are neglected in the energy equation. 

The physical quantities are non-dimensionalized in the following manner. 

(x, Y ,  z)=(x*, Y*, z*)/Lo, (u, u, w) = (u*, u*, w*)/uo, 
t = t*u,/Lo, P = (P* - Po)/P*u& T= T*/To, 

where asterisks denote dimensional values. The reference scales for length, velocity, time, 
pressure and temperature are the enclosure height (Lo), the convective velocity 
(uo= [g*b*Lo(TH- Tc)]’’2), the convective time (to= [g*/?*(TH- Tc)/Lo]-1’2 = N - l ,  where 
N is the Brunt-Vaisala frequency), the hydrostatic pressure ( p o )  and the film temperature 
(To = (T, + TH)/2) respectively. In the present form of non-dimensionalization the Reynolds, 
Prandtl and Rayleigh numbers are related by Ra = Re2 Pr. 

In accordance with the problem statement the boundary conditions are 

u = v = w = O  on all the walls, (4) 

T=(2-6)/2 at x=O, T=(2+6)/2 at x=l ,  aT/an=O at y=O, 1 and z=O, 1, ( 5 )  

where n denotes the co-ordinate normal to the surface. The overheat ratio 6 is set at 0.1 in the 
present study. The Prandtl number Pr is equal to 071. 
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Table I. The parameters of the computations 

Finite difference mesh 

Ra No. of grid points Minimum spacing* Spacing ratio? Time increment* 

- 103 32 x 32 x 32 3.33 x 10-2 1 
104 62 x 62 x 62 1.67 x lo-’ 1 
105 62 x 62 x 62 1.58 x lo-’ 2 - 

106 62 x 62 x 62 1.49 x lo-’ 3 1 .o 
108 62 x 62 x 62 8.0 x 10-3 I 0.1 
10’0 122 x 62 x 62 1.3 x 10-3 20 0.1 

- 

* Non-dimensional values. 
t Maximum grid spacing/minimum grid spacing. 

SOLUTION METHOD 

A discretized form of the governing equation system (1H5) is obtained through a control-volume- 
based finite difference procedure. Numerical solutions are acquired by an iterative method 
together with the pressure correction algorithm SIMPLE.” The present technique employs the 
strongly implicit scheme (SIP)13 to accelerate the convergence characteristics of the solutions. SIP 
is applied to the planes of constant z in order to determine simultaneously the dependent 
variables in the x- and y-directions on each plane. 

The convection terms in the momentum equation (2) are treated by the QUICK methodology 
modified for non-uniform grids,14 while those in the energy equation (3) are dealt with by a hybrid 
scheme.” The QUICK scheme involves a third-order-accurate upwind differencing, which 
possesses the stability of the first-order upwind formula and is free from substantial numerical 
diffusion experienced with the usual first-order techniques. Transient calculations are conducted 
by an implicit method to march in time. 

The entire enclosure constituted the full computational domain. The particulars of the 
computations are summarized in Table I. Variable grid spacing is introduced to resolve steep 
gradients of the velocity and the temperature near the walls. The grid dependence of the solutions 
has been checked at Ru = lo6 by a series of test computations in which the grid spacing was varied 
systematically. Changes in the peak velocity were less than 2% when the number of grid points 
was doubled in the x-direction. A much smaller variation of 0 2 %  was observed in the overall 
Nusselt number at the isothermal sidewalls. 

Convergence of computations is declared when the following criterion is met: 

for all 4, I 4 n - 4 n - 1 l  <10-4 

I 4 n  lmaximum 

where 4 denotes any dependent variable and n indicates the value of 4 at the nth iteration level. 
When the steady state flows are of interest, a converged solution at a lower Rayleigh number is 

used as the initial condition for a new (higher) Rayleigh number. However, at the highest Rayleigh 
number studied, i.e. Ru=10”, the field data of the two-dimensional calculation at the same 
Rayleigh number were implemented in the three-dimensional computational domain as its initial 
condition. Time steps are advanced until the effect of the initial condition becomes negligible in 
the result. 
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RESULTS AND DISCUSSION 

Computations were performed on a Hitachi S-820/80 supercomputer system at the Institute of 
Computational Fluid Dynamics (ICFD) in Tokyo, Japan. The system has a maximum CPU 
speed of 3 Gflops and a maximum in-core memory of 512MB. A typical computation for 
Ra Q lo7 required a CPU time of 30 min with 600 iterations and 100 MB of the memory. When 
Ra > lo7, transient calculations were made and consequently the CPU time increased drastically; 
at Ra= loio it took nearly 14 h to advance 1600 steps in time. 

Steady states were reached when RaQ lo8. At a higher Rayleigh number, say lolo, the fields did 
not appear to attain strictly steady states, as described later. 

The present section is divided into two parts. The overall field characteristics are examined first 
by three-dimensional numerical visualizations of the data for the Rayleigh number range at which 
the steady state was obtained (RUG lo8). Then the case with periodic fluctuations (Ra= lo1') is 
considered. The heat transfer rate across the enclosure is presented for the entire range of 
Rayleigh number studied, i.e., lo3 QRaQ lolo. 

The three-dimensional graphics to be reproduced in this section were generated by an 
interactive graphic software" which runs on a Fujitsu VP-200 supercomputer system at the 
ICFD. 

Steady state characteristics (lo3 d RaQ lo8) 

As a representative case for natural convection flows at a relatively low Rayleigh number, the 
isotherm surfaces and the absolute values of the vorticity (the magnitude of the vorticity vector) at 
Ra = lo4 are depicted in Plate 1. The global isotherm patterns in the bulk of the enclosure are 
qualitatively similar to those of the two-dimensional flows previously ~b ta ined ;~  however, in the 
z-direction, three-dimensional variations are observed, especially near the endwalls (z  = 0 and 1). 
The half-domain in 0.5 < z < 1 is the mirror image of the other half in 0 < z < 0.5 about the plane 
z=O.5. In addition, the cross-sections of the field in the z-direction are centrosymmetric with 
respect to the centre of the cavity (x = 0 5 ,  y = 0.5). The magnitudes of the vorticity are large in the 
regions close to the isothermal sidewalls. The existence of the unicellular flow can also be inferred 
by the vorticity plots. 

As the Rayleigh number increases, the field is characterized by the boundary layers near the 
isothermal sidewalls (x=O and 1) and the near-stagnant interior core structure in the central 
region, as described in Plate 2. At Ra = lo6 a pair of thin thermal boundary layers is seen along 
the isothermal walls and the temperature stratification is evident in the interior core. Three- 
dimensional variations are noticeable near the endwalls (z=O and 1); however, the temperature 
field shows relatively weak z-dependences in the interior core. The contours of the absolute 
vorticity clearly demonstrate the distinct boundary layers and the near-stagnant interior core 
structure of the flow field. The three-dimensionalities are prominent only near the endwalls, 
similar to the temperature field discussed earlier. It is noteworthy that regions of weak vortices 
are found in the areas where the isothermal vertical sidewalls abut the adiabatic endwalls. The 
presence of these regions extends over the entire height of the enclosure. These secondary vortices 
have also been documented by the earlier numerical simulations" which dealt with an enclosure 
of aspect ratio A,  = 2. 

The field data in the midplane (2 = 0 5 )  are consistent with the two-dimensional solutions3 in 
the range lo3 < R U G  lo6 as reported elsewhere.I6 

The results for Ra= lo8 (not shown) are qualitatively similar to those for Ra= lo6. Owing to 
the enhanced convective activity, the boundary layers near the sidewalls are thinner at Ra = lo8 
than in the lower-Ra case. 
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(a) 4 2  (max. 0.305 x 10-2) 

(b) 4 3  (max. 0.267 x 10-2) 

(d) 4 (max. 0.124 x 

(e) (absolute max. 0.138 x 10-3) 

(c) 4 a (ma. 0.134 x 10-2) 

Figure 2. Root mean squares and a cross-correlation of the fluctuation components in the mid-plane z =0.5 at Ra = 10" 

Field characteristics at a higher Rayleigh number (Ra= 10") 

The time-averaged fields are scrutinized first in this subsection by inspecting the isotherms and 
the isosurfaces of the absolute values of the vorticity as depicted in Plate 3. The instantaneous 
fields are averaged over a time interval which is sufficiently large compared to the dominant time 
scale of the flow. The time-averaged fields can be characterized by well-developed boundary 
layers along the isothermal sidewalls and a near-stagnant inner core. The thickness of the 
boundary layers is significantly reduced compared to the previous cases (see Plate 2). Even in the 
mean fields, appreciable three-dimensional variations of the isotherms and vorticity contour 
surfaces are evident. These irregularities were smoothed out in the results obtained with the k-& 
turbulence model" in the case of an enclosure with a depth-to-width ratio of 20 at Ra= lolo. 
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The root mean squares (RMS) and a cross-correlation of the turbulent fluctuations in the plane 
located at z=O.5 are displayed in Figure 2. These quantities are defined as 

where 4; denotes the fluctuating component of any variable 4i, to is the reference time level and At 
represents the time interval. High concentrations of the quantities are notable in regions in the 
vicinity of the walls. In all the fields depicted in Figure 2 these areas appear near the horizontal 
walls small distances away from the upper-left and lower-right corners. The boundary layers 
which flow near the isothermal vertical walls turn their directions sharply at the corners and then 
discharge into the near-stagnant central core (see also Plate 3). Large magnitudes of shear are 
generated when the fluid discharge takes place. These regions correspond to those of high 
concentrations of the correlations near the horizontal walls. In the vertical velocity and temper- 
ature fluctuations (Figures 2(b) and 2(d)), very thin layers of high concentrations of and T’2 are 
discernible adjacent to the sidewalls. Steep velocity gradients between the boundary layers and 
the stationary walls and between the boundary layers and the near stagnant central core are 
attributed to the generation of high shears. 

In the present results the cross-correlation of the horizontal and vertical components of 
velocity seems to be of the same order of magnitude as those of the mean fluctuations. The 
temperature fluctuations are found to be one order of magnitude smaller than those for the 
velocity components. Inspection of the results (not shown) reveals that the overall magnitudes of 
the correlations attain very small values near the endwalls where the velocities are low. 

Time histories of the local temperature at (x ,  y, z)=(O.51, 0.81, 0.517) and the overall Nusselt 
number (defined by equations (8) and (9)) at the cooled wall (x=O) are plotted in Figure 3. 
Periodic oscillations in the temperature are visible and for the Nusselt number the period appears 
to be comparable to that of the temperature. Figure 4 displays the Nusselt number in the 
midplane z = 0.5. The amplitude of the fluctuations decreases as time elapses, which is suggestive 
of the decay of the internal gravity wave present in the enclo~ure.~ 

The internal gravity wave in differentially heated two-dimensional enclosures has been 
extensively investigated for low-Rayleigh-number flows (see e.g. References 5 and 17). Patterson 
and Imberger’ attributed the mechanics of the generation and subsequent decay of the internal 
gravity wave to the initial piling up of fluids with different temperatures at the enclosure corners. 
The piling up of fluid layers creates temperature inversion in these regions. This generates the 
internal gravity wave, which travels between the isothermal walls across the enclosure. The period 
of the oscillations for the present results is approximately 8.0, which is in reasonable agreement 
with the theoretical value for two-dimensional flows5. l 7  of ( 2 4 2 ) ~  (= 8.89). This period also 
characterizes the oscillatory behaviour of the temperature and the Nusselt number, as pointed 
out in the previous figure. 

Heat transfer results 

numbers. These quantities are defined as follows: 
The non-dimensionalized heat transfer rate at a plane x = a  is represented by the Nusselt 

(x = a ,  y, z )+  Re Pru(T(x=  a, y, z ) -  1 )  
Nurnean(z)=Jol (-ax aT 
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Figure 3. Time histories of the local temperature and the overall Nusselt number (Ra= 10"): (a) temperature at 
(x, y, z)=(0.510, 0810, 0.517); (b) overall Nusselt number at the cooled wall at x=O 

1107 I 

80 i 
60 70 80 90 100 110 

TIME 

Figure 4. Evolution of the overall Nusselt number at the midplane z=O.5 of the enclosure at Ra= 10" 

Figure 5 shows the changes in the overall Nusselt number at the isothermal walls. The time- 
averaged Nusselt number is considered at  Ra = 10". For comparison purposes the same figure 
includes the two-dimensional  prediction^^^^.'^ and the three-dimensional numerical results' 
that are available in the literature. A logarithmic relationship is plotted in the figure. In the 
relatively low-Rayleigh-number flow regime (Ra < lo8) the present three-dimensional data agree 
reasonably well with the two-dimensional computations. In this regard the two-dimensional heat 
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RAYLEIGH NUMBER 

Figure 5. Changes in the overall Nusselt number with the Rayleigh number: --, present 3D computations; ---, 
Markatos and Pericleous;’ , present 3D computations; 0, Markatos and Pericleous’ (2D); 0, de Vahl Davis3 (2D); 

A, Silva and Emery” (2D); *, Lankhorst and Hoogendoorn” (3D) 

transfer rate appears to be a good first estimate for the case of the realistic cubical enclosure with 
thermally insulated endwalls ( z  = 0 and 1 ). 

In contrast, considerable discrepancies are present among the predictions in the high-Rayleigh- 
number flow regime (e.g. at Ra = 10”). Substantial differences are discernible between the overall 
Nusselt numbers calculated by the present three-dimensional results and the previous two- 
dimensional Various causes may be thought of, such as the difference in 
turbulence models adopted in the prior computations and the number of grid points, among 
others. However, at this juncture no conclusive statements could be made in the light of the lack 
of reliable experimental measurements and the insufficient data of full-scale three-dimensional 
computations. 

Utilizing the above numerical results, the following expression for the heat transfer correlation 
over lo3 < Ra< 10” for the three-dimensional enclosure is proposed: 

N~ov,,al, =0-163 R u ” ~ ~ ~ .  (10) 
It is recalled that Markatos and Pericleous’ determined the correlations over the Rayleigh 
number range lo3 < Ra < 10l6 for the two-dimensional air-filled enclosure as 

 NU,,,,,,^ = 0.143 Ra0.299 (lo3 < Ra < lo6), 

 NU^^^^^^^ = 0 . 0 8 2 R ~ ” ~ ~ ~  (106<Ra< 10‘2). 

As mentioned above, the differences in the heat transfer rates between the two- and three- 
dimensional results are appreciable as the Rayleigh number increases. 

CONCLUSIONS 

In the present numerical study an extensive series of high-resolution three-dimensional unsteady 
flow analyses has been performed on natural convection in a differentially heated cubical 
enclosure. The detailed structures of the fields were scrutinized by advanced numerical visualiza- 
tions techniques. Over the studied range of Rayleigh number lo3 d Ra < lo”, three-dimensional 
variations in the fields and the heat transfer rate were found to be confined to the regions near the 
endwalls as the Rayleigh number increased. Both the similarities and discrepancies between the 
present three-dimensional and preceding two-dimensional predictions are pointed out. These 
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underscore the significance of the three-dimensional computations in evaluating high-Rayleigh- 
number flows and the associated heat transfer properties. 
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‘APPENDIX: NOMENCLATURE 

specific heat at constant pressure 
Froude number, ug/g*  Lo 
gravitational acceleration 
thermal conductivity 
reference length (enclosure height) 
Brunt-Vaisala frequency, [g * f i  * ( TH - Tc)/Lo I ‘ I 2  

pressure 
reference pressure (hydrostatic pressure) 
molecular Prandtl number, c ,*p*/k*  
Rayleigh number, g * p*cf p *  L:( TH- Tc)/p* k* 
Reynolds number, p * uo L0/p * 
time 
temperature 
reference temperature, (T, + TH)/2 
cooled and heated sidewall temperatures 
reference velocity, [ g * f i  * LO ( TH - Tc)l ‘ I z  
velocity cowonents in the x-, y- and z-directions 
Cartesian co-ordinates 

Greek symbols 

B thermal expansion coefficient 
6 
P viscosity 
P density 

overheat ratio, ( TH - T,)/T, 

Superscript 
* dimensional quantities 
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